Function to optimize k parameter in Elo Rating Method
elo.model1(par, burn_in=100, init_elo = 1000, IA_data, all_ids, p_function = "sigmoid",
return_likelihood = T)
initial value of log(k)
burn in period for establishing initial elo scores. Defaults to 100
Initial Elo score for all individuals. Defaults to 1000
Data frame with Date, Winner, and Loser
list of all IDs in sample
function used to calculate probability of winning. Defaults to sinusoidal
function, but use "pnorm" to use the pnorm
-based method
implemented in the EloRating package.
Logical; if TRUE, returns log likelihood based on given par, if FALSE returns agonistic interactions table with elo scores based on given value of par
#for internal use